元培导师
您所在的位置: 首页元培导师 》 导师风采

导师名录-汤超



姓名

性别

所属院系

前沿交叉学科研究院

最高学位

博士

毕业学校

芝加哥大学

博导

职称

讲席教授

职务

前沿交叉学科研究院执行院长

电子邮箱

tangc@pku.edu.cn

办公室地址

吕志和楼214

本科生教学1

整合科学讨论班

本科生教学2

系统生物学选讲

本科生教学3

生命科学第三次革命

本科生教学4

美国的科学与大学

主要研究方向1

统计物理学

主要研究方向2

物理生物学

主要研究方向3

非线性科学

主要研究方向4

系统生物学

备注

2019年 中国科学院院士

2015北京大学第二届“十佳导师”

2002中国国家自然科学基金委员会“国家杰出青年基金(B类)

1997美国物理学会会士(Fellow)

教育经历

1986芝加哥大学 物理系 物理学 博士

1981中国科学技术大学 力学系 学士

学术成就

2018年 理论与实验结合,解释了困扰生物学界70余年的关于细菌生长的一个经典问题

2013年 与邓宏魁合作提出干细胞重编程的“跷跷板模型”

2009年 用理论与计算的方法研究生化适应性网络,找出了其中普适性的设计原理

2004年 将非线性科学的理论应用到生物调控网络的研究,提出了生物系统稳定性的理论解释

1996年 将统计物理思想引入蛋白质折叠理论,提出可设计性原理

1987年 提出自组织临界性的概念及理论,在非平衡统计物理与复杂系统方面开创了一个新领域

论文及专著

 

 

  1. M. Kohmoto, L. Kadanoff, and C. Tang, “Localization Problem in One Dimension: Mapping and Escape,” Phys. Rev. Lett. 50, 1870 (1983).
  2. L. Kadanoff and C. Tang, “Escape from Strange Repellers,” Proc. Natl. Acad. Sci. USA (Physics) 81, 1276 (1984).
  3. C. Tang, “Diffusion-Limited Aggregation and the Saffman-Taylor Problem,” Phys. Rev. A 31, 1977 (1985) (Rapid Communication).
  4. D. Bensimon, L. Kadanoff, S. Liang, B. Shraiman, and C. Tang, “Viscous Flows in Two Dimensions,” Rev. Mod. Phys. 58, 977 (1986).
  5. C. Tang and M. Kohmoto, “Global Scaling Properties of the Spectrum for a Quasiperiodic Schrödinger Equation,” Phys. Rev. B 34, 2041 (1986) (Rapid Communication).
  6. M. Kohmoto, B. Sutherland, and C. Tang, “Critical Wave Functions and a Cantor-Set Spectrum of a One-Dimensional Quasicrystal Model,” Phys. Rev. B 35, 1020 (1987).
  7. C. Tang, K. Wiesenfeld, P. Bak, S. Coppersmith, and P. Littlewood, “Phase Organization,” Phys. Rev. Lett. 58, 1161 (1987).
  8. P. Bak, C. Tang, and K. Wiesenfeld, “Self-Organized Criticality: An Explanation of 1/f Noise,” Phys. Rev. Lett. 59, 381 (1987).
  9. P. Bak, C. Tang, and K. Wiesenfeld, “Self-Organized Criticality,” Phys. Rev. A 38, 364 (1988).
  10. C. Tang and P. Bak, “Critical Exponents and Scaling Relations for Self-Organized Critical Phenomena,” Phys. Rev. Lett. 60, 2347 (1988).
  11. C. Tang and P. Bak, “Mean Field Theory of Self-Organized Critical Phenomena,” J. Stat. Phys. 51, 797 (1988).
  12. P. Bak, C. Tang, and K. Wiesenfeld, “Self-Organized Critical Phenomena,” in Directions in Chaos, vol. 2, edited by Hao Bai-Lin (World Scientific, Singapore, 1988).
  13. P. Bak, C. Tang, and K. Wiesenfeld, “Scale Invariant Spatial and Temporal Fluctuations in Complex Systems,” in Random Fluctuations and Pattern Growth: Experiments and Models, edited by H. E. Stanley and N. Ostrowsky (Kluwer Academic, Dordrecht, 1988).
  14. P. Bak, C. Tang, and K. Wiesenfeld, “Are Earthquakes, Fractals, and 1/f Noise Self-Organized Critical Phenomena,” in Cooperative Dynamics in Complex Physical Systems, edited by H. Takayama (Springer, Tokyo, 1988).
  15. P. Bak and C. Tang, “Self-Organized Criticality,” in Physics News in 1988, Physics Today January, S-27 (1989).
  16. K. Wiesenfeld, C. Tang, and P. Bak, “A Physicist's Sandbox,” J. Stat. Mech. 54, 1441 (1989).
  17. P. Bak and C. Tang, “Earthquakes as a Self-Organized Critical Phenomenon,” J. Goephys. Res. 94, No. B11, 15635 (1989).
  18. C. Tang, H. Nakanishi, and J. Langer, “Droplet Model for Autocorrelation Functions in an Ising Ferromagnet,” Phys. Rev. A 40, 995 (1989).
  19. C. Tang, S. Alexander, and R. Bruinsma, “Scaling Theory for the Growth of Amorphous Films,” Phys. Rev. Lett. 64, 772 (1990).
  20. C. Tang, “Self-Organized Critical Phenomena,” in Scaling in Disordered Materials: Fractal Structure and Dynamics, edited by J.P. Stokes, M.O. Robbins, and T.A. Witten (Materials Research Society, 1990).
  21. P. Bak, K. Chen, and C. Tang, “A Forest-Fire Model and Some Thoughts on Turbulence,” Phys. Lett. A 147, 297 (1990).
  22. J. Carlson, J. Langer, B. Shaw, and C. Tang, “Intrinsic Properties of a Burridge-Knopoff Model of an Earthquake Fault,” Phys. Rev. A 44, 884 (1991).
  23. J. Langer and C. Tang, “Rupture Propagation in a Model of an Earthquake Fault,” Phys. Rev. Lett. 67, 1043 (1991).
  24. C. Tang, “Earthquakes as a Complex Phenomenon,” in Modeling Complex Phenomena, edited by L. Lam and V. Naroditsky (Springer-Verlag, New York, 1992).
  25. C. Tang, “Self-Organized Criticality and the Bean Critical State,” Physica A 194, 315 (1993).
  26. C. Tang and S. Liang, “Patterns and Scaling properties in a Ballistic Deposition Model,” Phys. Rev. Lett. 71, 2769 (1993).
  27. C. Tang, S. Feng, and L. Golubovic, “Dynamics and Noise Spectra of a Driven Single Flux Line in Superconductors,” Phys. Rev. Lett. 72, 1264 (1994); ibid. 74, 3500(C) (1995).
  28. C. Tang, “Self-Organized Criticality: Sandpiles and Flux Lines,” in Proceedings of the Second International Conference on Computational Physics, edited by D.-Y. Li, D.-H. Feng, M. Strayer, and T.-Y. Zhang, (International Press, Cambridge, MA, 1995).
  29. A. Middleton and C. Tang, “Self-Organized Criticality in Non-Conserved Systems,” Phys. Rev. Lett. 74, 742 (1995).
  30. C. Denniston and C. Tang, “Dynamics of a Driven Single Flux Line in Superconductors,” Phys. Rev. B 51, 8457 (1995).
  31. C. Denniston and C. Tang, “Phases of Josephson Junction Ladders,” Phys. Rev. Lett. 75, 3930 (1995).
  32. X.S. Ling, H.J. Lezec, M.J. Higgins, J.S. Tsai, J. Fujita, H. Numata, Y. Nakamura, Y. Ochiai, Chao Tang, P.M. Chaikin, S. Bhattacharya. “Nature of Phase Transitions of Superconducting Wire Networks in a Magnetic Field,” Phys. Rev. Lett. 76, 2989 (1996); ibid. 77, 410(E) (1996).
  33. H. Li, R. Helling, C. Tang*, and N. Wingreen, “Emergence of Preferred Structures in a Simple Model of Protein Folding,” Science 273, 666 (1996).
  34. C. Tang, X.S. Ling, S. Bhattacharya, and P. Chaikin, “Peak Effect in Superconductors: Melting of Larkin Domains,” Europhys. Lett. 35, 597 (1996).
  35. H. Li, C. Tang, and N. Wingreen, “Nature of Driving force for Protein Folding -- A Result from Analyzing Statistical Potential,” Phys. Rev. Lett. 79, 765 (1997).
  36. C. Denniston and C. Tang, “Domain Walls and Phase Transitions in the Frustrated Two-Dimensional XY Model,” Phys. Rev. Lett. 79, 451 (1997).
  37. H. Li, C. Tang*, and N. Wingreen, “Are Protein Folds Atypical?” Proc. Natl. Acad. Sci. U.S.A. 95, 4987 (1998).
  38. C. Denniston and C. Tang, “Low Energy Excitations and Phase Transitions in the Frustrated Two-Dimensional XY Model,” Phys. Rev. B. 58, 6591 (1998).
  39. C. Tang, “Fractal Dimension of Julia Set for Non-analytic Maps”, J. Stat. Phys. 93, No. 3/4, 1001 (1998).
  40. R. Mélin, H. Li, N. Wingreen*, and C. Tang, “Designability, Thermodynamic Stability, and Dynamics in Protein Folding: a Lattice Model Study”, J. Chem. Phys. 110, 1252 (1999).
  41. C. Denniston and C. Tang, “Incommensurability in the Frustrated Two-Dimensional XY Model,” Phys. Rev. B. 60, 3163 (1999).
  42. S. Maslov, C. Tang, and Y.C. Zhang, “1/f Noise in Bak-Tang-Wiesenfeld Models on Narrow Stripes,” Phys. Rev. Lett. 83, 2449 (1999).
  43. C. Tang*, “Simple Models of the Protein Folding Problem,” Physica A 288, 31 (2000).
  44. T. Wang, J. Miller, N. Wingreen, C. Tang*, and K. Dill, “Symmetry and Designability for Lattice Protein Models,” J. Chem. Phys. 113, 8329 (2000).
  45. M. Kloster, S. Maslov, and C. Tang, “Exact Solution of Stochastic Directed Sandpile Model,” Phys. Rev. E, 63, 026111 (2001).
  46. R. Helling, H. Li, R. Mélin, J. Miller, N. Wingreen, C. Zeng, and C. Tang*, “The Designability of Protein Structures,” J. Mol. Graph. Model. 19, 157 (2001).
  47. H. Li, C. Tang, and N. Wingreen, “Designing Protein Structures,” in Phase Transitions and Self-Organization in Electronic and Molecular Networks, pp 441-445, edited by J.C. Philips and M.F. Thorpe (Kluwer Academic/Plenum Publishers, 2001).
  48. H. Cejtin, J. Edler, A. Gottlieb, R. Helling, H. Li, J. Philbin, N. Wingreen, and C. Tang*, “Fast Tree Search for Enumeration of a Lattice Model of Protein Folding,” J. Chem. Phys. 116, 352 (2002).
  49. E. Emberly, J. Miller, C. Zeng, N. Wingreen, and C. Tang*, “Identifying Proteins of High Designability via Surface-Exposure Patterns,” Proteins 47, 295 (2002).
  50. J. Miller, C. Zeng, N. Wingreen, and C. Tang*, “Emergence of highly-designable protein-backbone conformations in an off-lattice model,” Proteins 47, 506 (2002).
  51. E. Emberly, N. Wingreen, and C. Tang*, “Designability of -helical Proteins,” Proc. Natl. Acad. Sci. USA 99, 11163 (2002).
  52. H. Li, C. Tang*, N. Wingreen, “Designability of Protein Structures: A Lattice-Model Study using the Miyazawa-Jernigan Matrix,” Proteins 49, 403 (2002).
  53. M. Yahyanejad, M. Kardar, and C. Tang*, “Structure space of model proteins: a principle component analysis,” J. Chem. Phys. 118, 4277 (2003).
  54. E. Emberly, R. Mukhopadhyay, N. Wingreen, and C. Tang*, “Flexibility of -helices: Results of a statistical analysis of database protein structures,” J. Mol. Biol. 327, 229 (2003).
  55. J. Zhang, R. Chen, C. Tang, and J. Liang*, “Origin of scaling behavior of protein packing density: a sequential Monte Carlo study of compact long chain polymers,” J. Chem. Phys. 118, 6102 (2003).
  56. R. Mukhopadhyay, E. Emberly, C. Tang, and N. Wingreen, “Statistical mechanics of RNA folding: Importance of alphabet size,” Phys. Rev. E 68, 041904 (2003).
  57. N. Wingreen, H. Li, and C. Tang*, “Designability and Thermal Stability of Protein Structures,” Polymer 45, 699 (2004).
  58. M. Kloster and C. Tang, “Simulation and analysis of in vitro DNA evolution,” Phys. Rev. Lett. 92, 038101 (2004).
  59. E. Emberly, R. Mukhopadhyay, C. Tang, and N. Wingreen*, “Flexibility of -sheets: Principal component analysis of database protein structures,” Proteins 55, 91 (2004).
  60. F. Li, Y. Lu, T. Long, Q. Ouyang*, and C. Tang*, “The yeast cell-cycle network is robustly designed,” Proc. Natl. Acad. Sci. USA. 101, 4781 (2004).
  61. S. Moelbert, E. Emberly, and C. Tang*, “Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins,” Protein Science 13, 752 (2004).
  62. M. Kloster, C. Tang*, and N. Wingreen, “Finding regulatory modules through large scale gene expression data analysis,” Bioinformatics 21, 1172 (2005).
  63. W. Ma, C. Tang, and L. Lai*, “Specificity of trypsin and chymotrypsin: Loop motion controlled dynamic correlation as a determinant,” Biophys. J. 89, 1183 (2005).
  64. E. Kruus*, P. Thumfort, C. Tang, and N. Wingreen, “Gibbs sampling and helix-cap motifs,” Nucleic Acids Research, 33, 5343-5353 (2005).
  65. F. Li, Y. Lu, T. Long, Q. Ouyang, and C. Tang, “Global Dynamic Properties of Protein Networks,” in Frontiers and Prospects of Contemporary Applied Mathematics, edited by T. Li and P. Zhang (World Scientific, 2005).
  66. Y. Zhang, M. Qian*, Q. Ouyang*, M. Deng, F. Li, and C. Tang, “Stochastic model of yeast cell cycle network,” Physica D 219, 35 (2006).
  67. D. Shao, W. Zheng, Q. Ouyang*, and C. Tang*, "Dynamic Studies of Scaffold-dependent Mating Pathway in Yeast," Biophys. J. 91, 3986 (2006).
  68. W. Ma, L. Lai, Q. Ouyang*, and C. Tang*, Robustness and modular design of the Drosophila segment polarity network, Molecular Systems Biology 2, 70 (2006).
  69. J. Li, C. Tang, R. Car, and N. Wingreen*, “Hydrophobic interaction and hydrogen-bond network for a methane pair in liquid water,” Proc. Natl. Acad. Sci. USA. 104, 2626 (2007).
  70. K. Yang, W. Ma, H. Liang, Q. Ouyang, C. Tang, and L. Lai*, “Dynamic simulations on the Arachidonic Acid Metabolic Network,” PLoS Computational Biology, 3, No. 3, e55 (2007).
  71. K. Lau, S. Ganguli, and C. Tang*, "Function Constrains Network Architecture and Dynamics: A Case Study on the Yeast Cell Cycle Network", Phys. Rev. E 75, 051907 (2007).
  72. M. Kloster and C. Tang*, “SCUMBLE: A method for systematic and accurate detection of codon usage bias by maximum likelihood estimation,” Nucleic Acids Research 36, 3819 (2008).
  73. T. Y.-C. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang, and J. E. Ferrell, Jr.*, “Robust, tunable biological oscillations from interlocked positive and negative feedback loops,” Science 321, 126 (2008).
  74. K. Yang, H. Bai, Q. Ouyang, L. Lai*, C. Tang, “Finding Multiple-Target Optimal Intervention in Disease Related Molecular Network,” Molecular Systems Biology 4, 228 (2008).
  75. A. Trusina, F. R. Papa*, and C. Tang*, “Rationalizing translation attenuation in the network architecture of the unfolded protein response,” Proc. Natl. Acad. Sci. USA. 105, 20280 (2008).
  76. Z.S. Xie and C. Tang*, “A more robust Boolean model describing inhibitor binding”, Front. Electr. Electron. Eng. China 3, 371 (2008).
  77. H. Liang, H. Chen, K. Fan, P. Wei, X. Guo, C. Jin, C. Zeng, C. Tang, and L. Lai*, “De novo design of a motif,” Angew. Chem. 48, 3301 (2009).
  78. W. Ma, A. Trusina, H. El-Samad, W. Lim*, and C. Tang*, “Defining network topology that can perform biochemical adaptation,” Cell 138, 760 (2009).
  79. A. Trusina, C. Tang*. The unfolded protein response and translation attenuation: A modelling approach. Diabetes, Obesity and Metabolism 12, 27-31 (2010).
  80. Wang L, Lai L, Ouyang Q*, Tang C*. “Flux Balance Analysis of Ammonia Assimilation Network in E. coli Predicts Preferred Regulation Point,” PLoS One 6: e16362 (2011).
  81. Z Li, M Ni, J Li, Y Zhang, Q Ouyang* and C Tang*. “Decision making of the p53 network: Death by integration,” J. Theor. Biol. 271, 205-211 (2011).
  82. Hou L, Wang L, Qian M, Li D, Tang C, Zhu Y*, Deng M*, Li F*. “Modular Analysis of the Probabilistic Genetic Interaction Network,” Bioinformatics. 27, 853-859 (2011).
  83. Y. Tian, C. Luo*, Y. Lu, C. Tang, Q. Ouyang*. (2012). Cell cycle synchronization by nutrient modulation. Integr. Biol. 4:328-334.
  84. C. J. Ryan, A. Roguev, K. Patrick, J. Xu, H. Jahari, Z. Tong, P. Beltrao, M. Shaels, H. Qu, S. R. Collins, J. I. Kliegman, L. Jiang, D. Kuo, E. Toshi, H. S. Kim, W. Edelmann, M. C. Keogh, D. Greene, C. Tang, P. Cummimgham, K. M. Shokat, G. Cagney, J. P. Svensson, C. Guthrie, P. J. Espenshade, T. Ideker, N. J. Krogan*. Hierarchical modularity and the evolution of genetic interactomes across species. Molecular Cell 46, 691-704 (2012).
  85. Q. Ouyang*, L. Lai, C. Tang. Designing the scientific cradle for quantitative biologists. ACS Synth. Biol. 1, 254-255 (2012).
  86. A. H. Chau, J. M. Walter, J Gerardin, C. Tang*, W. A. Lim*. Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell 151, 320-332 (2012).
  87. Lim, W. A.*, C. M. Lee, and C. Tang. Design principles of regulatory networks: searching for the molecular algorithms of the cell. Mol Cell 49, 202-12 (2013).
  88. Zhang, M. and Tang, C.* A new inter- and multi-disciplinary forum for modeling, engineering and understanding life. Quantitative Biology 1 (1): 1-2 (2013).
  89. C. M. Lee*, Gong, S., Tang, C. and Lim, W. A. Bridging cross-cultural gaps in scientific exchange through innovative team challenge workshops. Quantitative Biology 1(1): 3-8 (2013).
  90. Shu, J., Wu, C., Wu, Y., Li, Z., Shao, S., Zhao, W., Tang, X., Yang, H., Shen, L., Zuo, X., Yang, W., Shi, Y., Chi, X., Zhang, H., Gao, G., Shu, Y., Yuan, K., He, W., Tang, C.*, Zhao, Y., and Deng, H.* Induction of pluripotency in mouse somatic cells with lineage specifiers, Cell 153, 963-975 (2013).
  91. Yang, X., Jost, A. P., Weiner, O.*, and Tang, C*. A light-inducible organelle targeting system for dynamically activating and inactivating signaling in budding yeast, Mol Biol Cell 24, 2419-2430 (2013).
  92. Yang X, Lau K-Y, Sevim V, Tang C*. Design Principles of the Yeast G1/S Switch. PLoS Biol 11(10): e1001673 (2013).
  93. Z. Li, S. Bianco, Z. Zhang and C. Tang*. Generic properties of random gene regulatory networks. Quantitative Biology 1(4): 253-260 (2013).
  94. N. Yin, W. Ma, J. Pei, Q. Ouyang, C. Tang and L. Lai*. Synergistic and Antagonistic Drug Combinations Depend on Network Topology. PLoS ONE 9(4): e93960 (2014).
  95. A. Stern, S. Bianco, M. T. Yeh, C. Wright, K. Butcher, C. Tang, R. Nielsen and R. Andino*. Costs and Benefits of Mutational Robustness in RNA Viruses. Cell Reports 8:1026-1036 (2014).
  96. C. Chang* and C. Tang*. Community detection for networks with unipartite and bipartite structure. New Journal of Physics 16(9), 093001 (2014).
  97. D. Lu, J. Y. Hsiao, N. E. Davey, V. A. V. Voorhis, S. A. Foster, C. Tang* and D. O. Morgan*. Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. The Journal of Cell Biology 207(1): 23-29 (2014).
  98. Xili Liu, Xin Wang, Xiaojing Yang, Sen Liu, Lingli Jiang, Yimiao Qu, Lufeng Hu, Qi Ouyang, Chao Tang*. Reliable cell cycle commitment in budding yeast is ensured by signal integration. eLife: e03977 (2015).
  99. Hui Shi, Xin Wang, Xiaorong Mo, Chao Tang, Shangwei Zhong*, and Xing Wang Deng*. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc. Natl. Acad. Sci. USA 112, 3817 (2015).
  100. X. Ping, C. Tang*. An Atlas of Network Topologies Reveals Design Principles for Caenorhabditis elegans Vulval Precursor Cell Fate Patterning. PLoS ONE 10(6): e0131397 (2015).
  101. C. Tang. What Have the Principles of Engineering Taught Us about Biological Systems? Cell Systems 2, 7 (2016).
  102. Liyang Xiong, Wenjia Shi and Chao Tang*. Adaptation through proportion. Physical Biology 13(4) 046007 (2016).
  103. Huan Hu, Hongmin Zhang, Sheng Wang, Miao Ding, Hui An, Yingping Hou, Xiaojing Yang, Wensheng Wei*, Yujie Sun*, Chao Tang*. Live visualization of genomic loci with BiFC-TALE. Scientific Reports 7, 40192 (2017).
  104. W. Shi, W. Ma, L. Xiong, M. Zhang, C. Tang*. Adaptation with transcriptional regulation. Scientific Reports 7, 42648 (2017). 
  105. Zhi-Bo Zhang, Qiu-Yue Wang, Yu-Xi Ke, Shi-Yu Liu, Jian-Qi Ju, Wendell A. Lim, Chao Tang, Ping Wei*. Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit. Cell Systems 5, 1-11 (2017).
  106. Li-Hui Cao, Dong Yang, Wei Wu, Xiankun Zeng, Bi-Yang Jing, Meng-Tong Li, Shanshan Qin, Chao Tang, Yuhai Tu, Dong-Gen Luo*. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila. Nature Communications 8:1357 (2017).
  107. P. Yu, Q. Nie*, C. Tang*, and L. Zhang*, “Nanog induced intermediate state in regulating stem cell differentiation and reprogramming,” BMC Syst. Biol. 12: 22 (2018). 
  108. Gao, Z., Chen, S., Qin, S. & Tang, C*. Network Motifs Capable of Decoding Transcription Factor Dynamics. Sci. Rep. 8, 1–10 (2018). 
  109. S. Qin and C. Tang*. "Early-warning signals of critical transition: Effect of extrinsic noise". Physical Review E, 97(3), 032406 (2018).
  110. L. Yu, et alLeqian Yu, Junjun Li, Jiayin Hong, Yasuhiro Takashima, Nanae Fujimoto, Minako Nakajima, Akihisa Yamamoto, Xiaofeng Dong, Yujiao Dang, Yu Hou, Wei Yang, Itsunari Minami, Keisuke Okita, Motomu Tanaka, Chunxiong Luo, Fuchou Tang, Yong Chen, Chao Tang*, Hidetoshi Kotera*, and Li Liu*. Low Cell-Matrix Adhesion Reveals Two Subtypes of Human Pluripotent Stem Cells. Stem Cell Reports 11(1): 142-156 (2018).
  111. J. Shen, F. Liu, M. Petkova and C. Tang*. "Toward deciphering developmental patterning with deep neural network." bioRxiv (2018): 374439. 
  112. Zongmao Gao, Haoyuan Sun, Shanshan Qin, Xiaojing Yang, Chao Tang*. "A systematic study of the determinants of protein abundance memory in cell lineage." Science Bulletin 63(16): 1051-1058 (2018).
  113. Mingyue Zhang and Chao Tang*. “Bi-functional biochemical networks,” Physical biology 16, 016001 (2019). 
  114. Xin Wang, Kang Xia, Xiaojing Yang, Chao Tang*. “Growth strategy of microbes on mixed carbon sources.” Nature Communications 10: 1279 (2019).
  115. Shanshan Qin, Qianyi Li, Chao Tang*, and Yuhai Tu*, “The optimal odor-receptor interaction network is sparse in olfactory systems: Compressed sensing by nonlinear neurons with a finite dynamic range,” bioRxiv, 464875 (2019). 
  116. Yimiao Qu, Jun Jiang, Xiang Liu, Ping Wei, Xiaojing Yang, Chao Tang*. “Cell cycle inhibitor Whi5 records environmental information to coordinate growth and division in yeast.” Cell Reports, accepted.

近五年承担的主要项目

2015年 《生物网络的可计算建模》,国家自然科学基金委员会(项目号:91430217

2014年 《基于蛋白质调控网络的系统生物学研究》首席科学家,国家重点基础研究发展计划(973发展计划)项目 (项目号:2015CB910300)

推荐书目

(1-5本)

《爱因斯坦文集》(商务印书馆,许良英等编译),《物理定律的本性》(费曼Feynman著),《The Elements of Style (William Struck),《人类简史》(赫拉利Harari著),《莫泊桑短篇小说选》

 

社会兼职

北京大学定量生物学中心主任;

北京大学-清华大学生命科学联合中心学术委员会主任;

定量生物学杂志共同主编;

粤港澳交叉科学中心主任;

丹麦波尔研究所科学顾问委员会成员;

美国国家科学基金会理论物理生物学中心科学顾问委员会成员

 

 

TOP