姓名 |
张志华 |
性别 |
男 |
所属院系 |
数学学院概率统计系 |
最高学位 |
博士 |
毕业学校 |
西安交通大学 |
博导 |
是 |
职称 |
教授 |
职务 |
|
电子邮箱 |
zhzhang@math.pku.edu.cn |
办公室地址 |
理科1号楼1419E |
本科生教学1 |
统计数据科学导论 |
本科生教学2 |
深度学习:算法与应用 |
本科生教学3 |
高维概率论 |
本科生教学4 |
强化学习:理论与算法 |
主要研究方向1 |
机器学习 |
研究方向2 |
贝叶斯统计 |
主要研究方向3 |
自然语言处理 |
主要研究方向4 |
|
备注 |
北京大学数学学院概率统计系 |
||
教育经历 |
2001年 西安交通大学 博士 1994年 四川大学 硕士 1991年 成都地质学院 学士 |
||
学术成就 |
2018年 北京市智源学者计划 主要从事人工智能、机器学习与应用统计学领域的教学与研究,迄今在国际重要学术期刊和重要的计算机学科会议上发表 70 余篇论文。 |
||
论文及专著
|
专著: Ian Goodfellow,Yoshua Bengio,张志华审校,《深度学习deep learning》,北京:人民邮电出版社,2017年。
Ye H., Xie G., Luo L., Zhang Z.,Fast stochastic second-order method logarithmic in condition number,Pattern Recognition,2019,88:629-642. Luo L., Zhu W., Zhang W., Zhang T., Zhang Z., Pei J.,Sketched follow-the-regularized-leader for online factorization machine,Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2018:1900-1909. Ye H., Li Y., Chen C., Zhang Z.,Fast Fisher discriminant analysis with randomized algorithms,Pattern Recognition,2017,72:82-92. Ye H., Luo L., Zhang Z.,Approximate Newton methods and their local convergence,34th International Conference on Machine Learning, ICML 2017,2017,8:5981-6004. Chen Z., Luo L., Zhang Z.,Communication lower bounds for distributed convex optimization: Partition data on features,31st AAAI Conference on Artificial Intelligence, AAAI 2017,2017:1812-1818. Peng C., Zhang Z., Wong K.-C., Zhang X., Keyes D.E.,A scalable community detection algorithm for large graphs using stochastic block models,Intelligent Data Analysis,2017,21(6):1463-1485. Wang S., Zhang Z., Zhang T.,Towards more efficient SPSD matrix approximation and CUR matrix decomposition,Journal of Machine Learning Research,2016,17:1-49. Wang S., Luo L., Zhang Z.,SPSD matrix approximation vis column selection: Theories, algorithms, and extensions,Journal of Machine Learning Research,2016,17:. Jiang W., Xie C., Zhang Z.,Wishart mechanism for differentially private principal components analysis,30th AAAI Conference on Artificial Intelligence, AAAI 2016,2016:1730-1736. Zhao S., Xie C., Zhang Z.,A scalable and extensible framework for superposition-structured models,30th AAAI Conference on Artificial Intelligence, AAAI 2016,2016:2372-2378. Fu T., Luo L., Zhang Z.,Quasi-Newton hamiltonian monte carlo,32nd Conference on Uncertainty in Artificial Intelligence 2016, UAI 2016,2016:212-221. Zhang Z., Li J.,Compound poisson processes, latent shrinkage priors and Bayesian nonconvex penalization,Bayesian Analysis,2015,10(2):247-274. Luo L., Xie Y., Zhang Z., Li W.-J.,Support matrix machines,32nd International Conference on Machine Learning, ICML 2015,2015,2:938-947. Peng C., Zhang Z., Wong K.-C., Zhang X., Keyes D.E.,A scalable community detection algorithm for large graphs using stochastic block models,IJCAI International Joint Conference on Artificial Intelligence,2015:2090-2096. Zhang Z.,The matrix ridge approximation: algorithms and applications,Machine Learning,2014,97(3):227-258. Wang S., Zhang Z.,Efficient algorithms and error analysis for the modified Nyström Method,Journal of Machine Learning Research,2014,33:996-1004. Xie C., Yan L., Li W.-J., Zhang Z.,Distributed power-law graph computing: Theoretical and empirical analysis,Advances in Neural Information Processing Systems,2014,2:1673-1681. Tu B., Zhang Z., Wang S., Qian H.,Making fisher discriminant analysis scalable,31st International Conference on Machine Learning, ICML 2014,2014,3:2614-2632. Wang S., Tu B., Xu C., Zhang Z.,Exact Subspace clustering in linear time,Proceedings of the National Conference on Artificial Intelligence,2014,3:2113-2120. Wang S., Zhang C., Qian H., Zhang Z.,Using the matrix ridge approximation to speedup Determinantal point processes sampling algorithms,Proceedings of the National Conference on Artificial Intelligence,2014,3:2121-2127. Wang S., Zhang C., Qian H., Zhang Z.,Improving the modified Nyström method using spectral shifting,Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2014:611-620. Zhang Z., Wang D., Dai G., Jordan M.I.,Matrix-variate dirichlet process priors with applications,Bayesian Analysis,2014,9(2):259-286. Zhang Z., Chen C., Dai G., Li W.-J., Yeung D.-Y.,Multicategory large margin classification methods: Hinge losses vs. coherence functions,Artificial Intelligence,2014,215:55-78. |
||
近五年承担的主要项目 |
2018-2021年《大规模优化问题的近似牛顿方法:理论与实现》,国家自然科学基金面上项目(项目号:11771002) |
||
社会兼职 |
2013~ Journal of Machine Learning Research 执行编委 美国 “数学评论” 的特邀评论员。 |